Skip to Content
Merck
  • HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site.

HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site.

Journal of natural products (2010-01-21)
Janine Zaugg, Igor Baburin, Barbara Strommer, Hyun-Jung Kim, Steffen Hering, Matthias Hamburger
ABSTRACT

A plant extract library was screened for GABA(A) receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 microg/mL] potentiated GABA-induced chloride currents through GABA(A) receptors (composed of alpha(1), beta(2), and gamma(2S) subunits) by 169.1 +/- 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1-4, 6-13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 +/- 26.5% with an EC(50) of 52.4 +/- 9.4 microM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABA(A) receptor modulation. The stimulation of chloride currents through GABA(A) receptors by compound 5 was not antagonized by flumazenil (10 microM). These data show that piperine (5) represents a new scaffold of positive allosteric GABA(A) receptor modulators targeting a benzodiazepine-independent binding site.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Piperine, ≥97%
Sigma-Aldrich
Piperine, ≥95%, FG