Skip to Content
Merck
  • Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.

Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.

ChemSusChem (2015-08-05)
Luqman Atanda, Abhijit Shrotri, Swathi Mukundan, Qing Ma, Muxina Konarova, Jorge Beltramini
ABSTRACT

A water-THF biphasic system containing N-methyl-2-pyrrolidone (NMP) was found to enable the efficient synthesis of 5-hydroxymethylfurfural (HMF) from a variety of sugars (simple to complex) using phosphated TiO2 as a catalyst. Fructose and glucose were selectively converted to HMF resulting in 98 % and 90 % yield, respectively, at 175 °C. Cellobiose and sucrose also gave rise to high HMF yields of 94 % and 98 %, respectively, at 180 °C. Other sugar variants such as starch (potato and rice) and cellulose were also investigated. The yields of HMF from starch (80-85 %) were high, whereas cellulose resulted in a modest yield of 33 %. Direct transformation of cellulose to HMF in significant yield (86 %) was assisted by mechanocatalytic depolymerization-ball milling of acid-impregnated cellulose. This effectively reduced cellulose crystallinity and particle size, forming soluble cello-oligomers; this is responsible for the enhanced substrate-catalytic sites contact and subsequent rate of HMF formation. During catalyst recyclability, P-TiO2 was observed to be reusable for four cycles without any loss in activity. We also investigated the conversion of the cello-oligomers to HMF in a continuous flow reactor. Good HMF yield (53 %) was achieved using a water-methyl isobutyl ketone+NMP biphasic system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonia-14N, 99.99 atom % 14N
Supelco
Tetrahydrofuran, HPLC grade, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Ammonium molybdate, 99.98% trace metals basis
Sigma-Aldrich
Ammonium metavanadate, 99.95% trace metals basis
Sigma-Aldrich
Titanium(IV) butoxide, reagent grade, 97%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Ammonia, anhydrous, ≥99.98%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
D-(−)-Fructose, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
D-(−)-Fructose, ≥99% (HPLC)
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
D-(−)-Fructose, 98.0-102.0% dry basis, meets USP testing specifications
Sigma-Aldrich
D-(−)-Fructose, ≥99% (HPLC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
D-(−)-Fructose, ≥99% (HPLC), BioXtra
Sigma-Aldrich
Ammonia solution, 0.4 M in THF
Sigma-Aldrich
4-Methyl-2-pentanone, ≥99%, FCC
Sigma-Aldrich
Ammonium molybdate tetrahydrate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Ammonium molybdate, meets USP testing specifications
Sigma-Aldrich
Ammonia solution, 4 M in methanol
Sigma-Aldrich
Ammonium molybdate tetrahydrate, BioReagent, suitable for cell culture, suitable for insect cell culture, 81.0-83.0% MoO3 basis
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Ammonium metatungstate hydrate, ≥85% WO3 basis (gravimetric)
Sigma-Aldrich
Ammonium metatungstate hydrate, 99.99% trace metals basis
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Toluene, anhydrous, 99.8%