Accéder au contenu
Merck

The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane.

Biophysical journal (2002-12-24)
Lene Oddershede, Jakob Kisbye Dreyer, Sonia Grego, Stanley Brown, Kirstine Berg-Sørensen
RÉSUMÉ

Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo. The efficiency of this in vivo biotinylation is very low, thus enabling the attachment of a streptavidin-coated bead binding specifically to a single biotinylated lambda-receptor. The bead was used as a handle for the optical tweezers and as a marker for the single particle tracking routine. We propose a model that allows extraction of the motion of the protein from measurements of the mobility of the bead-molecule complex; these results are equally applicable to analyze bead-protein complexes in other membrane systems. Within a domain of radius approximately 25 nm, the receptor diffuses with a diffusion constant of (1.5 +/- 1.0) x 10(-9) cm(2)/s and sits in a harmonic potential as if it were tethered by an elastic spring of spring constant of ~1.0 x 10(-2) pN/nm to the bacterial membrane. The purpose of the protein motion might be to facilitate transport of maltodextrins through the outer bacterial membrane.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Streptavidin−FITC from Streptomyces avidinii, essentially salt-free, lyophilized powder, ≥5 units/mg protein