Accéder au contenu
Merck

In vitro RNA SELEX for the generation of chemically-optimized therapeutic RNA drugs.

Methods (San Diego, Calif.) (2016-03-15)
Kevin T Urak, Sabrina Shore, William M Rockey, Shi-Jie Chen, Anton P McCaffrey, Paloma H Giangrande
RÉSUMÉ

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind with exquisitely high affinity and specificity to target molecules and are thus often referred to as 'nucleic acid' antibodies. Oligonucleotide aptamers are derived through a process of directed chemical evolution called SELEX (Systematic Evolution of Ligands by Exponential enrichment). This chemical equivalent of Darwinian evolution was first described in 1990 by Tuerk & Gold and Ellington & Szostak and has since yielded aptamers for a wide-range of applications, including biosensor technologies, in vitro diagnostics, biomarker discovery, and therapeutics. Since the inception of the original SELEX method, numerous modifications to the protocol have been described to fit the choice of target, specific conditions or applications. Technologies such as high-throughput sequencing methods and microfluidics have also been adapted for SELEX. In this chapter, we outline key steps in the SELEX process for enabling the rapid identification of RNA aptamers for in vivo applications. Specifically, we provide a detailed protocol for the selection of chemically-optimized RNA aptamers using the original in vitro SELEX methodology. In addition, methods for performing next-generation sequencing of the RNAs from each round of selection, based on Illumina sequencing technology, are discussed.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, BioReagent, suitable for electrophoresis, ≥99.0%
Sigma-Aldrich
Chlorure de calcium dihydrate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ethidium bromide solution, BioReagent, for molecular biology, 10 mg/mL in H2O