- Fabrication of DNA polymer brush arrays by destructive micropatterning and rolling-circle amplification.
Fabrication of DNA polymer brush arrays by destructive micropatterning and rolling-circle amplification.
A method for fabricating DNA polymer brush arrays using photolithography and plasma etching followed by solid-phase enzymatic DNA amplification is reported. After attaching oligonucleotide primers to the surface of a glass coverslip, a thin layer of photoresist is spin-coated on the glass and patterned via photolithography to generate an array of posts in the resist. An oxygen-based plasma is then used to destroy the exposed oligonucleotide primers. The glass coverslip with the primer array is assembled into a microfluidic chip and DNA polymer brushes are synthesized on the oligonucleotide array by rolling-circle DNA amplification. We have demonstrated that the linear polymers can be rapidly synthesized in situ with a high degree of control over their density and length.