Accéder au contenu
Merck
  • Combined metabolome and transcriptome profiling provides new insights into diterpene biosynthesis in S. pomifera glandular trichomes.

Combined metabolome and transcriptome profiling provides new insights into diterpene biosynthesis in S. pomifera glandular trichomes.

BMC genomics (2015-11-18)
Fotini A Trikka, Alexandros Nikolaidis, Codruta Ignea, Aphrodite Tsaballa, Leto-Aikaterini Tziveleka, Efstathia Ioannou, Vassilios Roussis, Eleni A Stea, Dragana Božić, Anagnostis Argiriou, Angelos K Kanellis, Sotirios C Kampranis, Antonios M Makris
RÉSUMÉ

Salvia diterpenes have been found to have health promoting properties. Among them, carnosic acid and carnosol, tanshinones and sclareol are well known for their cardiovascular, antitumor, antiinflammatory and antioxidant activities. However, many of these compounds are not available at a constant supply and developing biotechnological methods for their production could provide a sustainable alternative. The transcriptome of S.pomifera glandular trichomes was analysed aiming to identify genes that could be used in the engineering of synthetic microbial systems. In the present study, a thorough metabolite analysis of S. pomifera leaves led to the isolation and structure elucidation of carnosic acid-family metabolites including one new natural product. These labdane diterpenes seem to be synthesized through miltiradiene and ferruginol. Transcriptomic analysis of the glandular trichomes from the S. pomifera leaves revealed two genes likely involved in miltiradiene synthesis. Their products were identified and the corresponding enzymes were characterized as copalyl diphosphate synthase (SpCDS) and miltiradiene synthase (SpMilS). In addition, several CYP-encoding transcripts were identified providing a valuable resource for the identification of the biosynthetic mechanism responsible for the production of carnosic acid-family metabolites in S. pomifera. Our work has uncovered the key enzymes involved in miltiradiene biosynthesis in S. pomifera leaf glandular trichomes. The transcriptomic dataset obtained provides a valuable tool for the identification of the CYPs involved in the synthesis of carnosic acid-family metabolites.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétate d'éthyle, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichlorométhane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Éther diéthylique, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Éther diéthylique, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Cyclohexane, ACS reagent, ≥99%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Dichlorométhane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Éther diéthylique
Sigma-Aldrich
Acétone, histological grade, ≥99.5%
Sigma-Aldrich
Éther diéthylique, ACS reagent, ≥98.0%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Dichlorométhane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichlorométhane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Nitrogen, ≥99.998%
Sigma-Aldrich
Éther diéthylique, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Acétone, natural, ≥97%
Sigma-Aldrich
Acétate d'éthyle
Sigma-Aldrich
Acétate d'éthyle, ≥99%, FCC, FG
Sigma-Aldrich
Acétate d'éthyle, anhydrous, 99.8%
Sigma-Aldrich
Dichlorométhane, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Cyclohexane, ACS reagent, ≥99%
Sigma-Aldrich
Acétate d'éthyle, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Éther diéthylique, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Acétate d'éthyle, natural, ≥99%, FCC, FG
Sigma-Aldrich
Cyclohexane, anhydrous, 99.5%
Sigma-Aldrich
Acétate d'éthyle, biotech. grade, ≥99.8%
Sigma-Aldrich
Acétate d'éthyle