Accéder au contenu
Merck

Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.

The Science of the total environment (2014-09-01)
Nuria Ortuño, Juan A Conesa, Julia Moltó, Rafael Font
RÉSUMÉ

The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichlorométhane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Acétate d'éthyle, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dichlorométhane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acétate d'éthyle, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétate d'éthyle, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Dichlorométhane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Toluène, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Dichlorométhane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichlorométhane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Toluène, anhydrous, 99.8%
Sigma-Aldrich
Acétate d'éthyle, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acétone, ACS reagent, ≥99.5%
USP
Acétone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétone, histological grade, ≥99.5%
Sigma-Aldrich
Acétate d'éthyle, anhydrous, 99.8%
Sigma-Aldrich
Dichlorométhane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Supelco
Dichlorométhane, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acétate d'éthyle, ≥99%, FCC, FG
Sigma-Aldrich
Acétone, natural, ≥97%
Sigma-Aldrich
Acétate d'éthyle
Sigma-Aldrich
Acétone, ≥99%, meets FCC analytical specifications