Accéder au contenu
Merck
  • Ionic complex of risedronate with positively charged deoxycholic acid derivative: evaluation of physicochemical properties and enhancement of intestinal absorption in rats.

Ionic complex of risedronate with positively charged deoxycholic acid derivative: evaluation of physicochemical properties and enhancement of intestinal absorption in rats.

Archives of pharmacal research (2013-11-21)
Jin Woo Park, Youngro Byun
RÉSUMÉ

Risedronate is widely used clinically to treat osteoporosis, Paget's disease, hypercalcemia, bone metastasis, and multiple myeloma. However, its oral efficacy is restricted due to its low bioavailability and severe gastrointestinal adverse effects. This study was designed to evaluate the effect of deoxycholic acid derivatives on the permeability and oral bioavailability of risedronate by increasing its lipophilicity and affinity to bile transporters. We synthesized two bile acid derivatives, N(α)-deoxycholyl-L-lysyl-methylester (DCK) and N(α)-deoxycholyl-L-lysyl-hydroxide (HDCK) as oral absorption enhancers. After ionic complex formation with the bile acid derivatives, the complexes were characterized by powder X-ray diffraction. Their artificial membrane permeabilities and bioavailabilities in rats were investigated in comparison with pure risedronate. Complex formation with DCK or HDCK demonstrated that risedronate existed in an amorphous form in the complex. A physical complex of risedronate with DCK enhanced the apparent membrane permeability of risedronate significantly but pure risedronate was not permeable. An in vivo study revealed that the C max and AUClast of risedronate/DCK (1:2) complex were 1.92- and 2.64-fold higher than those of pure risedronate, respectively. Thus, the risedronate/DCK complex can improve the oral absorption of risedronate and patient compliance by reducing dose frequency and adverse reactions.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Méthanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofurane, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Méthanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Chloroforme, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Tetrahydrofurane, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chlorure d'hydrogène solution, 4.0 M in dioxane
Sigma-Aldrich
Méthanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroforme, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acétate d′ammonium, ACS reagent, ≥97%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Tetrahydrofurane, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acétate d′ammonium, ≥99.99% trace metals basis
Sigma-Aldrich
Acide chlorhydrique solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Méthanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Tetrahydrofurane, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Acide chlorhydrique, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Acide chlorhydrique, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Acide chlorhydrique, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chlorure d'hydrogène solution, 2.0 M in diethyl ether
Sigma-Aldrich
Méthanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Lithium aluminum hydride, powder, reagent grade, 95%