Accéder au contenu
Merck
  • ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells.

ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells.

Autophagy (2015-02-24)
Jing-Hong Chen, Peng Zhang, Wen-Dan Chen, Dan-Dan Li, Xiao-Qi Wu, Rong Deng, Lin Jiao, Xuan Li, Jiao Ji, Gong-Kan Feng, Yi-Xin Zeng, Jian-Wei Jiang, Xiao-Feng Zhu
RÉSUMÉ

PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Anticorps monoclonal anti-α-tubuline, souris, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
MISSION® esiRNA, targeting human ATM