Accéder au contenu
Merck

Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

Nature communications (2015-01-22)
R Guillemin, P Decleva, M Stener, C Bomme, T Marin, L Journel, T Marchenko, R K Kushawaha, K Jänkälä, N Trcera, K P Bowen, D W Lindle, M N Piancastelli, M Simon
RÉSUMÉ

Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Disulfure de carbone, ACS reagent, ≥99.9%
Sigma-Aldrich
Disulfure de carbone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Disulfure de carbone, ACS reagent, ≥99.9%
Sigma-Aldrich
Disulfure de carbone, anhydrous, ≥99%
Supelco
Carbon disulfide solution, certified reference material, 5000 μg/mL in methanol