Accéder au contenu
Merck

The effects of exogenous surfactant treatment in a murine model of two-hit lung injury.

Anesthesia and analgesia (2014-12-17)
Vanessa Zambelli, Giacomo Bellani, Maria Amigoni, Alice Grassi, Margherita Scanziani, Francesca Farina, Roberto Latini, Antonio Pesenti
RÉSUMÉ

Because pulmonary endogenous surfactant is altered during acute respiratory distress syndrome, surfactant replacement may improve clinical outcomes. However, trials of surfactant use have had mixed results. We designed this animal model of unilateral (right) lung injury to explore the effect of exogenous surfactant administered to the injured lung on inflammation in the injured and noninjured lung. Mice underwent hydrochloric acid instillation (1.5 mL/kg) into the right bronchus and prolonged (7 hours) mechanical ventilation (25 mL/kg). After 3 hours, mice were treated with 1 mL/kg exogenous surfactant (Curosurf®) (surf group) or sterile saline (NaCl 0.9%) (vehicle group) in the injured (right) lung or did not receive any treatment (hydrochloric acid, ventilator-induced lung injury). Gas exchange, lung compliance, and bronchoalveolar inflammation (cells, albumin, and cytokines) were evaluated. After a significant analysis of variance (ANOVA) test, Tukey post hoc test was used for statistical analysis. At least 8 to 10 mice in each group were analyzed for each evaluated variable. Surfactant treatment significantly increased both the arterial oxygen tension to fraction of inspired oxygen ratio and respiratory system static compliance (P = 0.027 and P = 0.007, respectively, for surf group versus vehicle). Surfactant therapy increased indices of inflammation in the acid-injured lung compared with vehicle: inflammatory cells (685 [602-773] and 216 [125-305] × 1000/mL, respectively; P < 0.001) and albumin in bronchoalveolar lavage (BAL) (1442 ± 588 and 743 ± 647 μg/mL, respectively; P = 0.027). These differences were not found (P = 0.96 and P = 0.54) in the contralateral (uninjured) lung (inflammatory cells 131 [78-195] and 119 [87-149] × 1000/mL and albumin 135 ± 100 and 173 ± 115 μg/mL). Exogenous surfactant administration to an acid-injured right lung improved gas exchange and whole respiratory system compliance. However, markers of inflammation increased in the right (injured) lung, although this result was not found in the left (uninjured) lung. These data suggest that the mechanism by which surfactant improves lung function may involve both uninjured and injured alveoli.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Chlorure d'hydrogène solution, 4.0 M in dioxane
Sigma-Aldrich
Acide chlorhydrique solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acide chlorhydrique, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Acide chlorhydrique, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Acide chlorhydrique, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chlorure d'hydrogène solution, 2.0 M in diethyl ether
Supelco
Acide chlorhydrique solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Chlorure d'hydrogène solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Acide chlorhydrique solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Chlorure d'hydrogène solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acide chlorhydrique solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Chlorure d'hydrogène solution, 1.0 M in acetic acid
Supelco
Hydrogen chloride - 1-butanol solution, ~3 M in 1-butanol, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur