Accéder au contenu
Merck
  • Oxorhenium(V) complexes of quinoline and isoquinoline carboxylic acids--synthesis, structural characterization and catalytic application in epoxidation reactions.

Oxorhenium(V) complexes of quinoline and isoquinoline carboxylic acids--synthesis, structural characterization and catalytic application in epoxidation reactions.

Dalton transactions (Cambridge, England : 2003) (2013-05-04)
Barbara Machura, Mariusz Wolff, Eric Benoist, Jörg A Schachner, Nadia C Mösch-Zanetti
RÉSUMÉ

Six novel oxorhenium(V) complexes incorporating quinoline and isoquinoline carboxylic acid derivatives were prepared in good yields. Relying on the experimental conditions, compounds with two chelate ligands [ReOCl(iqc)2]·MeOH (1), [ReO(OMe)(iqc)2] (2), [ReO(OMe)(mqc)2] (3) and [ReO(OMe)(8-qc)2] (4) and compounds incorporating one bidentate ligand [ReOCl2(iqc)(PPh3)] (5) and [ReOCl2(mqc)(PPh3)] (6) were synthesized (iqcH = isoquinoline-1-carboxylic acid, mqcH = 4-methoxy-2-quinolinecarboxylic acid and 8-qcH = 8-quinolinecarboxylic acid). The reported compounds were characterized by spectroscopic methods and single crystal X-ray diffraction analysis. In compounds 1 and 2, one chelate ligand occupies an axial and an equatorial position, while the other one occupies two equatorial positions, forming a cis-(N,N) isomer. In turn, complexes 3 and 4 show a rare ligand arrangement with two trans-N, trans-O chelate ligands in the equatorial plane and a linear axial [O=Re-OMe] unit. The complexes with one chelate ligand 5 and 6 are cis-(Cl,Cl)-isomers. All compounds were tested as potential catalysts in the epoxidation of cyclooctene with 3 equiv. of tert-butylhydroperoxide. The yield of cyclooctane oxide varies between 16 and 68% (50 °C, 24 h), and the catalytic competency of compounds 1-6 was discussed with regard to the structure of each complex.