Accéder au contenu
Merck
  • Mechanism-based inactivation of hepatic cytochrome P450 2C6 and P450 3A1 following in vivo administration of 3,5-diethoxycarbonyl-1,4-dihydro-2,6-dimethyl-4-ethylpyridine to rats: differences from previously observed in vitro results.

Mechanism-based inactivation of hepatic cytochrome P450 2C6 and P450 3A1 following in vivo administration of 3,5-diethoxycarbonyl-1,4-dihydro-2,6-dimethyl-4-ethylpyridine to rats: differences from previously observed in vitro results.

Canadian journal of physiology and pharmacology (1994-04-01)
S M Kimmett, J P McNamee, G S Marks
RÉSUMÉ

Using progesterone 21-hydroxylase as a selective substrate for P450 2C6 in phenobarbital-treated male rats, and androstenedione and progesterone 6 beta-hydroxylases as well as erythromycin N-demethylase as selective markers for P450 3A1 in dexamethasone-treated female rats, we have shown that these P450 isozymes undergo mechanism-based inactivation after in vivo administration of 3,5-diethoxycarbonyl-1,4-dihydro-2,6-dimethyl-4-ethylpyridine (4-ethyl DDC). These results differ from our previous studies where no inactivation was observed after in vitro administration of 4-ethyl DDC to rat hepatic microsomes. We show that the differences between the in vivo and in vitro effects of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) analogues are due to the presence of residual 4-ethyl DDC in the in vitro experiments causing time-independent competitive inhibition and obscuring observation of mechanism-based inactivation.