Accéder au contenu
Merck

Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain.

The Journal of prosthetic dentistry (2013-02-12)
Bo-Ah Lee, Ok-Su Kim, Mong-Sook Vang, Yeong-Joon Park
RÉSUMÉ

Ti-10Ta-10Nb alloy is a promising alloy for metal ceramic crowns because of its good corrosion resistance and low cytotoxicity. However, more information is needed on the bond strength between this alloy and porcelain. The purpose of this study was to compare the surface morphology, surface roughness, and bond strength of a Ti-10Ta-10Nb alloy, pure Ti, and a Ti-6Al-4V alloy. Ti-10Ta-10Nb, pure Ti, and Ti-6Al-4V specimens (25 × 3 × 0.55 mm plate) were prepared and then divided into 6 groups (n=8) according to surface treatment. Group P (control group) was polished with SiC paper. Groups S50 and S250 were airborne-particle abraded with 50 μm and 250 μm aluminum oxide powder. Group HCl was immersed in 10% HCl aqueous solution, and Group HF was immersed in 17% HNO(3)/HF solution. Group TiN was coated with TiN. Atomic force microscopy was used to observe the surface roughness of the metal surface. Scanning electron microscopy was used to analyze the surface profile. A 3-point bending test was performed to evaluate the bond strength. Two-way analysis of variance (ANOVA) was performed to compare the roughness and bond strength and statistical differences were revealed by the Bonferroni post hoc test (α=.05). There were significant differences in the surface roughness, surface profile, and bond strength of the Ti alloys according to the surface treatments. The groups with the higher mean surface roughness showed higher bond strength, but surface profile had a larger effect on the bond strength than surface roughness. Moreover, the bond strength of the Ti-10Ta-10Nb alloy was high. Ti-10Ta-10Nb would be more suitable for a metal ceramic crown than pure Ti or Ti-6Al-4V, which have limited use because of their low bond strength to porcelain.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Acide nitrique, ACS reagent, 70%
Sigma-Aldrich
Acide chlorhydrique, ACS reagent, 37%
Sigma-Aldrich
Chlorure d'hydrogène solution, 4.0 M in dioxane
Sigma-Aldrich
Hydrofluoric acid, ACS reagent, 48%
Sigma-Aldrich
Acide nitrique, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Acide chlorhydrique solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acide chlorhydrique, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Acide chlorhydrique, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Acide chlorhydrique, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chlorure d'hydrogène solution, 2.0 M in diethyl ether
Sigma-Aldrich
Acide nitrique, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Hydrofluoric acid, 48 wt. % in H2O, ≥99.99% trace metals basis
Supelco
Acide chlorhydrique solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Chlorure d'hydrogène solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Silicon carbide, −400 mesh particle size, ≥97.5%
Sigma-Aldrich
Acide chlorhydrique solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Niobium, powder, <45 μm, 99.8% trace metals basis
Sigma-Aldrich
Chlorure d'hydrogène solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Silicon carbide, -200 mesh particle size
Sigma-Aldrich
Acide chlorhydrique solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Titanium nitride, <3 μm
Sigma-Aldrich
Silicon carbide, nanopowder, <100 nm particle size
Sigma-Aldrich
Chlorure d'hydrogène solution, 1.0 M in acetic acid
Supelco
Acide nitrique solution, 0.1 M HNO3 in water (0.1N), eluent concentrate for IC
Sigma-Aldrich
Tantalum, powder, −325 mesh, 99.9% trace metals basis
Sigma-Aldrich
Acide nitrique, ACS reagent, ≥90.0%
Sigma-Aldrich
Tantalum
Sigma-Aldrich
Tantalum, foil, thickness 0.025 mm, ≥99.9% trace metals basis