Accéder au contenu
Merck

UCP2 inhibition triggers ROS-dependent nuclear translocation of GAPDH and autophagic cell death in pancreatic adenocarcinoma cells.

Biochimica et biophysica acta (2012-11-06)
Ilaria Dando, Claudia Fiorini, Elisa Dalla Pozza, Chiara Padroni, Chiara Costanzo, Marta Palmieri, Massimo Donadelli
RÉSUMÉ

Mitochondrial uncoupling protein 2 (UCP2) can moderate oxidative stress by favoring the influx of protons into the mitochondrial matrix, thus reducing electron leakage from respiratory chain and mitochondrial superoxide production. Here, we demonstrate that UCP2 inhibition by genipin or UCP2 siRNA strongly increases reactive oxygen species (ROS) production inhibiting pancreatic adenocarcinoma cell growth. We also show that UCP2 inhibition triggers ROS-dependent nuclear translocation of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), formation of autophagosomes, and the expression of the autophagy marker LC3-II. Consistently, UCP2 over-expression significantly reduces basal autophagy confirming the anti-autophagic role of UCP2. Furthermore, we demonstrate that autophagy induced by UCP2 inhibition determines a ROS-dependent cell death, as indicated by the apoptosis decrease in the presence of the autophagy inhibitors chloroquine (CQ) or 3-methyladenine (3-MA), or the radical scavenger NAC. Intriguingly, the autophagy induced by genipin is able to potentiate the autophagic cell death triggered by gemcitabine, the standard chemotherapeutic drug for pancreatic adenocarcinoma, supporting the development of an anti-cancer therapy based on UCP2 inhibition associated to standard chemotherapy. Our results demonstrate for the first time that UCP2 plays a role in autophagy regulation bringing new insights into mitochondrial uncoupling protein field.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Genipin, ≥98% (HPLC), powder