Accéder au contenu
Merck

Alveolar macrophage metabolic programming via a C-type lectin receptor protects against lipo-toxicity and cell death.

Nature communications (2022-11-27)
Michal Scur, Ahmad Bakur Mahmoud, Sayanti Dey, Farah Abdalbarri, Iona Stylianides, Daniel Medina-Luna, Gayani S Gamage, Aaron Woblistin, Alexa N M Wilson, Haggag S Zein, Ashley Stueck, Andrew Wight, Oscar A Aguilar, Francesca Di Cara, Brendon D Parsons, Mir Munir A Rahim, James R Carlyle, Andrew P Makrigiannis
RÉSUMÉ

Alveolar macrophages (AM) hold lung homeostasis intact. In addition to the defense against inhaled pathogens and deleterious inflammation, AM also maintain pulmonary surfactant homeostasis, a vital lung function that prevents pulmonary alveolar proteinosis. Signals transmitted between AM and pneumocytes of the pulmonary niche coordinate these specialized functions. However, the mechanisms that guide the metabolic homeostasis of AM remain largely elusive. We show that the NK cell-associated receptor, NKR-P1B, is expressed by AM and is essential for metabolic programming. Nkrp1b-/- mice are vulnerable to pneumococcal infection due to an age-dependent collapse in the number of AM and the formation of lipid-laden AM. The AM of Nkrp1b-/- mice show increased uptake but defective metabolism of surfactant lipids. We identify a physical relay between AM and alveolar type-II pneumocytes that is dependent on pneumocyte Clr-g expression. These findings implicate the NKR-P1B:Clr-g signaling axis in AM-pneumocyte communication as being important for maintaining metabolism in AM.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-puromycine, clone 12D10, conjugué au colorant Alexa Fluor 647, clone 12D10, 0.5 mg/mL, from mouse