Accéder au contenu
Merck

A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment.

The Journal of biological chemistry (2013-11-06)
Kei Okatsu, Midori Uno, Fumika Koyano, Etsu Go, Mayumi Kimura, Toshihiko Oka, Keiji Tanaka, Noriyuki Matsuda
RÉSUMÉ

Parkinsonism typified by sporadic Parkinson disease is a prevalent neurodegenerative disease. Mutations in PINK1 (PTEN-induced putative kinase 1), a mitochondrial Ser/Thr protein kinase, or PARKIN, a ubiquitin-protein ligase, cause familial parkinsonism. The accumulation and autophosphorylation of PINK1 on damaged mitochondria results in the recruitment of Parkin, which ultimately triggers quarantine and/or degradation of the damaged mitochondria by the proteasome and autophagy. However, the molecular mechanism of PINK1 in dissipation of the mitochondrial membrane potential (ΔΨm) has not been fully elucidated. Here we show by fluorescence-based techniques that the PINK1 complex formed following a decrease in ΔΨm is composed of two PINK1 molecules and is correlated with intermolecular phosphorylation of PINK1. Disruption of complex formation by the PINK1 S402A mutation weakened Parkin recruitment onto depolarized mitochondria. The most disease-relevant mutations of PINK1 inhibit the complex formation. Taken together, these results suggest that formation of the complex containing dyadic PINK1 is an important step for Parkin recruitment onto damaged mitochondria.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Monoclonal Anti-Actin antibody produced in mouse, clone AC-40, ascites fluid
Sigma-Aldrich
Anti-TOM22 antibody , Mouse monoclonal, clone 1C9-2, purified from hybridoma cell culture