Accéder au contenu
Merck

BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence.

Proceedings of the National Academy of Sciences of the United States of America (2016-10-30)
Yohei Hayashi, Edward C Hsiao, Salma Sami, Mariselle Lancero, Christopher R Schlieve, Trieu Nguyen, Koyori Yano, Ayako Nagahashi, Makoto Ikeya, Yoshihisa Matsumoto, Ken Nishimura, Aya Fukuda, Koji Hisatake, Kiichiro Tomoda, Isao Asaka, Junya Toguchida, Bruce R Conklin, Shinya Yamanaka
RÉSUMÉ

Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7). In normal fibroblasts, the efficiency of iPSC generation was enhanced by transducing mutant ACVR1 (617G > A) or SMAD1 or adding BMP4 protein at early times during the reprogramming. In contrast, adding BMP4 at later times decreased iPSC generation. ID genes, transcriptional targets of BMP-SMAD signaling, were critical for iPSC generation. The BMP-SMAD-ID signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. These results using patient cells carrying the ACVR1 R206H mutation reveal how cellular signaling and gene expression change during the reprogramming processes.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anticorps anti-tyrosine hydroxylase, Chemicon®, from rabbit
Sigma-Aldrich
Anticorps anti-tubuline (isoforme bêta III, extrémité C-terminale), clone TU-20 (similaire à TUJ1), ascites fluid, clone TU-20 (Similar to TUJ1), Chemicon®
Sigma-Aldrich
Anti-GAPDH Antibody, from chicken, purified by affinity chromatography