- A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT).
A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT).
We have produced a functional heat labile enterotoxin (LT-) B subunit of Escherichia coli in maize. LT-B is a multimeric protein that presents an ideal model for an edible vaccine, displaying stability in the gut and inducing mucosal and systemic immune responses. Transgenic maize was engineered to synthesize the LT-B polypeptides, which assembled into oligomeric structures with affinity for G(M1) gangliosides. We orally immunized BALB/c mice by feeding transgenic maize meal expressing LT-B or non-transgenic maize meal spiked with bacterial LT-B. Both treatments stimulated elevated IgA and IgG antibodies against LT-B and the closely related cholera toxin B subunit (CT-B) in serum, and elevated IgA in fecal pellets. The transgenic maize induced a higher anti-LT-B and anti-CT-B mucosal and serum IgA response compared to the equivalent amount of bacterial LT-B spiked into maize. Following challenge by oral administration of the diarrhea inducing toxins LT and CT, transgenic maize-fed mice displayed reduced fluid accumulation in the gut compared to non-immunized mice. Moreover, the gut to carcass ratio of immunized mice was not significantly different from the PBS (non-toxin) challenged control group. We concluded that maize-synthesized LT-B had features of the native bacterial LT-B such as molecular weight, G(M1) binding ability, and induction of serum and mucosal immunity. We have demonstrated that maize, a major food and feed ingredient, can be efficiently transformed to produce, accumulate, and store a fully assembled and functional candidate vaccine antigen.