- Stability of the ABCD1 Protein with a Missense Mutation: A Novel Approach to Finding Therapeutic Compounds for X-Linked Adrenoleukodystrophy.
Stability of the ABCD1 Protein with a Missense Mutation: A Novel Approach to Finding Therapeutic Compounds for X-Linked Adrenoleukodystrophy.
Mutations in the ABCD1 gene that encodes peroxisomal ABCD1 protein cause X-linked adrenoleukodystrophy (X-ALD), a rare neurodegenerative disorder. More than 70% of the patient fibroblasts with this missense mutation display either a lack or reduction of the ABCD1 protein because of posttranslational degradation. In this study, we analyzed the stability of the missense mutant ABCD1 proteins (p.A616T, p.R617H, and p.R660W) in X-ALD fibroblasts and found that the mutant ABCD1 protein p.A616T has the capacity to recover its function by incubating at low temperature. In the case of such a mutation, chemical compounds that stabilize mutant ABCD1 proteins could be therapeutic candidates. Here, we prepared CHO cell lines stably expressing ABCD1 proteins with a missense mutation in fusion with green fluorescent protein (GFP) at the C-terminal. The stability of each mutant ABCD1-GFP in CHO cells was similar to the corresponding mutant ABCD1 protein in X-ALD fibroblasts. Furthermore, it is of interest that the GFP at the C-terminal was degraded together with the mutant ABCD1 protein. These findings prompted us to use CHO cells expressing mutant ABCD1-GFP for a screening of chemical compounds that can stabilize the mutant ABCD1 protein. We established a fluorescence-based assay method for the screening of chemical libraries in an effort to find compounds that stabilize mutant ABCD1 proteins. The work presented here provides a novel approach to finding therapeutic compounds for X-ALD patients with missense mutations.