- NLRP3 inflammasome activates interleukin-23/interleukin-17 axis during ischaemia-reperfusion injury in cerebral ischaemia in mice.
NLRP3 inflammasome activates interleukin-23/interleukin-17 axis during ischaemia-reperfusion injury in cerebral ischaemia in mice.
NLRP3 inflammasome has been reported associated with some inflammatory and autoimmune diseases. We previously researches showed that interleukin-23 (IL-23) and interleukin-17 (IL-17) aggravates the ischaemic injury of the brain tissue. However, it is poorly understood whether the NLPR3 inflammasome was involved in regulating and activating the IL-23/IL-17 axis in ischaemic stroke. We aimed to delineate whether the NLRP3 inflammasome signalling provokes the IL-23/IL-17 axis and interleukin-23 receptor (IL-23R) inducing the ischaemia-reperfusion injury of the brain in mice. The male C57/BL6 mice with experimental transient middle cerebral artery occlusion (tMCAO) were established for cerebral ischaemia-reperfusion injury. MCC950 was utilized as a selective NLRP3 inflammasome inhibitor. NLRP3 inflammasome associated protein, IL-23/IL-17 and IL-23R were detected to investigate their changes in the brain tissue after tMCAO. MCC950 inhibited the NLRP3 inflammasome, which alleviated the neurological ischaemia-reperfusion injury. Inhibition the NLRP3 inflammasome signalling by treatment with MCC950 decreased the activation of IL-23/IL-17 axis and the expression of IL-23R. The NLRP3 inflammasome facilitated the injury effect of the IL-23/IL-17 axis, which contributed to the cerebral ischaemia-reperfusion injury. This process was associated with IL-23R. Furthermore, this indicated that the NLRP3 inflammasome, as an important therapeutic target for ischaemic stroke, involves multiple mechanisms in ischaemia-reperfusion injury, and MCC950 is a promising way for clinical treatment.