Accéder au contenu
Merck

Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics.

The Journal of the Acoustical Society of America (2019-03-03)
Shihab Shamma, Kelsey Dutta
RÉSUMÉ

Pitch is a fundamental attribute in auditory perception involved in source identification and segregation, music, and speech understanding. Pitch percepts are intimately related to harmonic resolvability of sound. When harmonics are well-resolved, the induced pitch is usually salient and precise, and several models relying on autocorrelations or harmonic spectral templates can account for these percepts. However, when harmonics are not completely resolved, the pitch percept becomes less salient, poorly discriminated, with upper range limited to a few hundred hertz, and spectral templates fail to convey percept since only temporal cues are available. Here, a biologically-motivated model is presented that combines spectral and temporal cues to account for both percepts. The model explains how temporal analysis to estimate the pitch of the unresolved harmonics is performed by bandpass filters implemented by resonances in dendritic trees of neurons in the early auditory pathway. It is demonstrated that organizing and exploiting such dendritic tuning can occur spontaneously in response to white noise. This paper then shows how temporal cues of unresolved harmonics may be integrated with spectrally resolved harmonics, creating spectro-temporal harmonic templates for all pitch percepts. Finally, the model extends its account of monaural pitch percepts to pitches evoked by dichotic binaural stimuli.