Accéder au contenu
Merck
  • Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins.

Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins.

The Journal of biological chemistry (2006-09-20)
Peter V Usatyuk, Narasimham L Parinandi, Viswanathan Natarajan
RÉSUMÉ

4-Hydroxy-2-nonenal (4-HNE), one of the major biologically active aldehydes formed during inflammation and oxidative stress, has been implicated in a number of cardiovascular and pulmonary disorders. 4-HNE has been shown to increase vascular endothelial permeability; however, the underlying mechanisms are unclear. Hence, in the current study, we tested our hypothesis that 4-HNE-induced changes in cellular thiol redox status may contribute to modulation of cell signaling pathways that lead to endothelial barrier dysfunction. Exposure of bovine lung microvascular endothelial cells (BLMVECs) to 4-HNE induced reactive oxygen species generation, depleted intracellular glutathione, and altered cell-cell adhesion as measured by transendothelial electrical resistance. Pretreatment of BLM-VECs with thiol protectants, N-acetylcysteine and mercaptopropionyl glycine, attenuated 4-HNE-induced decrease in transendothelial electrical resistance, reactive oxygen species generation, Michael protein adduct formation, protein tyrosine phosphorylation, activation of ERK, JNK, and p38 MAPK, and actin cytoskeletal rearrangement. Treatment of BLMVECs with 4-HNE resulted in the redistribution of FAK, paxillin, VE-cadherin, beta-catenin, and ZO-1, and intercellular gap formation. Western blot analyses confirmed the formation of 4-HNE-derived Michael adducts with the focal adhesion and adherens junction proteins. Also, 4-HNE decreased tyrosine phosphorylation of FAK without affecting total cellular FAK contents, suggesting the modification of integrins, which are natural FAK receptors. 4-HNE caused a decrease in the surface integrin in a time-dependent manner without altering total alpha5 and beta3 integrins. These results, for the first time, revealed that 4-HNE in redox-dependent fashion affected endothelial cell permeability by modulating cell-cell adhesion through focal adhesion, adherens, and tight junction proteins as well as integrin signal transduction that may lead dramatic alteration in endothelial cell barrier dysfunction during heart infarction, brain stroke, and lung diseases.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diethyl 3,4-pyrroledicarboxylate, 98%