Accéder au contenu
Merck

Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning.

Cell death & disease (2011-03-03)
K R Francis, L Wei
RÉSUMÉ

Transplantation of neural progenitors derived from human embryonic stem cells (hESCs) provides a potential therapy for ischemic stroke. However, poor graft survival within the host environment has hampered the benefits and applications of cell-based therapies. The present investigation tested a preconditioning strategy to enhance hESC tolerance, thereby improving graft survival and the therapeutic potential of hESC transplantation. UC06 hESCs underwent neural induction and terminal differentiation for up to 30 days, becoming neural lineage cells, exhibiting extensive neurites and axonal projections, generating synapses and action potentials. To induce a cytoprotective phenotype, hESC-derived neurospheres were cultured at 0.1% oxygen for 12 h, dissociated and plated for terminal differentiation under 21% oxygen. Immunocytochemistry and electrophysiology demonstrated the 'hypoxic preconditioning' promoted neuronal differentiation. Western blotting revealed significantly upregulated oxygen-sensitive transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α, while producing a biphasic response within HIF targets, including erythropoietin, vascular endothelial growth factor and Bcl-2 family members, during hypoxia and subsequent reoxygenation. This cytoprotective phenotype resulted in a 50% increase in both total and neural precursor cell survival after either hydrogen peroxide insult or oxygen-glucose deprivation. Cellular protection was maintained for at least 5 days and corresponded to upregulation of neuroprotective proteins. These results suggest that hypoxic preconditioning could be used to improve the effectiveness of human neural precursor transplantation therapies.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-NeuN, clone A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
Anticorps anti-noyau, clone 235-1, clone 235-1, Chemicon®, from mouse
Sigma-Aldrich
Anticorps anti-protéine associée aux microtubules 2 (MAP2), Chemicon®, from rabbit
Sigma-Aldrich
Anticorps anti-caspase-3, forme active (clivée), Chemicon®, from rabbit
Sigma-Aldrich
Anticorps anti-tubuline (isoforme bêta III, extrémité C-terminale), clone TU-20 (similaire à TUJ1), ascites fluid, clone TU-20 (Similar to TUJ1), Chemicon®
Sigma-Aldrich
Anti-O4 Antibody, clone 81, clone 81 (mAB O4), Chemicon®, from mouse
Sigma-Aldrich
Anti-Synaptophysin Antibody, clone SY38, clone SY38, Chemicon®, from mouse
Sigma-Aldrich
Anticorps anti-NR1, CT, Upstate®, from mouse