Accéder au contenu
Merck

New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins.

Structure (London, England : 1993) (2018-07-31)
Dmitrij Golovenko, Bastian Bräuning, Pratik Vyas, Tali E Haran, Haim Rozenberg, Zippora Shakked
RÉSUMÉ

The tumor suppressor p53 acts as a transcription factor recognizing diverse DNA response elements (REs). Previous structural studies of p53-DNA complexes revealed non-canonical Hoogsteen geometry of A/T base pairs at conserved CATG motifs leading to changes in DNA shape and its interface with p53. To study the effects of DNA shape on binding characteristics, we designed REs with modified base pairs "locked" into either Hoogsteen or Watson-Crick form. Here we present crystal structures of these complexes and their thermodynamic and kinetic parameters, demonstrating that complexes with Hoogsteen base pairs are stabilized relative to those with all-Watson-Crick base pairs. CATG motifs are abundant in p53REs such as GADD45 and p53R2 related to cell-cycle arrest and DNA repair. The high-resolution structures of these complexes validate their propensity to adopt the unique Hoogsteen-induced structure, thus providing insights into the functional role of DNA shape and broadening the mechanisms that contribute to DNA recognition by proteins.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ammonium citrate tribasic, ≥97% (titration)
Sigma-Aldrich
Thrombine from human plasma, lyophilized powder, 1500-3500 NIH units/mg protein (E1%/280, 18.3), suitable for cell culture
Sigma-Aldrich
Poly(éthylène glycol), BioUltra, 3,350