Skip to Content
Merck
  • SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors.

SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors.

The Journal of biological chemistry (1996-10-04)
K Colwill, L L Feng, J M Yeakley, G D Gish, J F Cáceres, T Pawson, X D Fu
ABSTRACT

Serine/arginine-rich (SR) proteins are essential for pre-mRNA splicing, and modify the choice of splice site during alternative splicing in a process apparently regulated by protein phosphorylation. Two protein kinases have been cloned that can phosphorylate SR proteins in vitro: SRPK1 and Clk/Sty. Here, we show that these two kinases phosphorylate the same SR proteins in vitro, but that SRPK1 has the higher specific activity toward ASF/SF2. SRPK1, like Clk/Sty, phosphorylates ASF/SF2 in vitro on sites that are also phosphorylated in vivo. Tryptic peptide mapping of ASF/SF2 revealed that three of the phosphopeptides from full-length ASF/SF2 phosphorylated in vitro contain consecutive phosphoserine-arginine residues or phosphoserine-proline residues. In vitro, the Clk/Sty kinase phosphorylated Ser-Arg, Ser-Lys, or Ser-Pro sites, whereas SRPK1 had a strong preference for Ser-Arg sites. These results suggest that SRPK1 and Clk/Sty may play different roles in regulating SR splicing factors, and suggest that Clk/Sty has a broader substrate specificity than SRPK1.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
CLK1 (129-end), active, GST tagged human, PRECISIO® Kinase, recombinant, expressed in baculovirus infected Sf9 cells, ≥70% (SDS-PAGE), buffered aqueous glycerol solution