Skip to Content
Merck
  • Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20.

Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20.

Journal of cell science (2015-02-13)
Michiel Boekhout, Rob Wolthuis
ABSTRACT

Nek2 isoform A (Nek2A) is a presumed substrate of the anaphase-promoting complex/cyclosome containing Cdc20 (APC/C(Cdc20)). Nek2A, like cyclin A, is degraded in mitosis while the spindle checkpoint is active. Cyclin A prevents spindle checkpoint proteins from binding to Cdc20 and is recruited to the APC/C in prometaphase. We found that Nek2A and cyclin A avoid being stabilized by the spindle checkpoint in different ways. First, enhancing mitotic checkpoint complex (MCC) formation by nocodazole treatment inhibited the degradation of geminin and cyclin A, whereas Nek2A disappeared at a normal rate. Second, depleting Cdc20 effectively stabilized cyclin A but not Nek2A. Nevertheless, Nek2A destruction crucially depended on Cdc20 binding to the APC/C. Third, in contrast to cyclin A, Nek2A was recruited to the APC/C before the start of mitosis. Interestingly, the spindle checkpoint very effectively stabilized an APC/C-binding mutant of Nek2A, which required the Nek2A KEN box. Apparently, in cells, the spindle checkpoint primarily prevents Cdc20 from binding destruction motifs. Nek2A disappearance marks the prophase-to-prometaphase transition, when Cdc20, regardless of the spindle checkpoint, activates the APC/C. However, Mad2 depletion accelerated Nek2A destruction, showing that spindle checkpoint release further increases APC/C(Cdc20) catalytic activity.

MATERIALS
Product Number
Brand
Product Description

SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Reversine, ≥98% (HPLC), solid
Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
Sodium chloride solution, 0.85%
SAFC
HEPES
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
HEPES
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Thymidine, ≥99.0% (HPLC)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Thymidine, ≥99%
Sigma-Aldrich
Sodium Fluoride Solution
Sigma-Aldrich
Thymidine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)