Skip to Content
Merck
  • Toward a mechanism for eastern North American forest mesophication: differential litter drying across 17 species.

Toward a mechanism for eastern North American forest mesophication: differential litter drying across 17 species.

Ecological applications : a publication of the Ecological Society of America (2014-02-22)
Jesse K Kreye, J Morgan Varner, J Kevin Hiers, John Mola
ABSTRACT

Long-term fire exclusion has altered ecological function in many forested ecosystems in North America. The invasion of fire-sensitive tree species into formerly pyrogenic upland forests in the southeastern United States has resulted in dramatic shifts in surface fuels that have been hypothesized to cause reductions in plant community flammability. The mechanism for the reduced flammability or "mesophication" has lacked empirical study. Here we evaluate a potential mechanism of reduced flammability by quantifying moisture retention (response time and initial moisture capacity) of foliar litter beds from 17 southeastern tree species spanning a wide range of fire tolerance. A k-means cluster analysis resulted in four species groups: a rapidly drying cluster of eight species; a five-species group that absorbed little water but desorbed slowly; a two-species group that absorbed substantial moisture but desorbed rapidly; and a two-species cluster that absorbed substantial moisture and dried slowly. Fire-sensitive species were segregated into the slow moisture loss clusters while fire-tolerant species tended to cluster in the rapid drying groups. Principal-components analysis indicated that several leaf characteristics correlated with absorption capacity and drying rates. Thin-leaved species with high surface area : volume absorbed the greatest moisture content, while those with large, curling leaves had the fastest drying rates. The dramatic shifts in litter fuels as a result of invasion by fire-sensitive species generate a positive feedback that reduce the windows of ignition, thereby facilitating the survival, persistence, and continued invasion of fire-sensitive species in the uplands of the southeastern United States.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Water, suitable for HPLC
Supelco
Water, for TOC analysis
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Water, ACS reagent, for ultratrace analysis
Supelco
Water, suitable for ion chromatography
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, tested according to Ph. Eur.
Sigma-Aldrich
Water, Deionized
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Water-16O, ≥99.94 atom % 16O