Skip to Content
Merck
  • Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state.

Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state.

Molecular cell (2022-03-02)
Chi-Chuan Lin, Kin Man Suen, Polly-Anne Jeffrey, Lukasz Wieteska, Jessica A Lidster, Peng Bao, Alistair P Curd, Amy Stainthorp, Caroline Seiler, Hans Koss, Eric Miska, Zamal Ahmed, Stephen D Evans, Carmen Molina-París, John E Ladbury
ABSTRACT

The recruitment of signaling proteins into activated receptor tyrosine kinases (RTKs) to produce rapid, high-fidelity downstream response is exposed to the ambiguity of random diffusion to the target site. Liquid-liquid phase separation (LLPS) overcomes this by providing elevated, localized concentrations of the required proteins while impeding competitor ligands. Here, we show a subset of phosphorylation-dependent RTK-mediated LLPS states. We then investigate the formation of phase-separated droplets comprising a ternary complex including the RTK, (FGFR2); the phosphatase, SHP2; and the phospholipase, PLCγ1, which assembles in response to receptor phosphorylation. SHP2 and activated PLCγ1 interact through their tandem SH2 domains via a previously undescribed interface. The complex of FGFR2 and SHP2 combines kinase and phosphatase activities to control the phosphorylation state of the assembly while providing a scaffold for active PLCγ1 to facilitate access to its plasma membrane substrate. Thus, LLPS modulates RTK signaling, with potential consequences for therapeutic intervention.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-SHP2 antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Millipore
Protease Inhibitor Cocktail Set III, EDTA-Free, Protease inhibitor cocktail III, EDTA-free for inhibiting aspartic, cysteine, and serine proteases as well as aminopeptidases in mammalian cells and tissues.