Skip to Content
Merck
  • MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells.

MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells.

Biology open (2014-07-27)
Pai-Chi Tsai, Shameena Bake, Sridevi Balaraman, Jeremy Rawlings, Rhonda R Holgate, Dustin Dubois, Rajesh C Miranda
ABSTRACT

Ethanol exposure during pregnancy is an established cause of birth defects, including neurodevelopmental defects. Most adult neurons are produced during the second trimester-equivalent period. The fetal neural stem cells (NSCs) that generate these neurons are an important but poorly understood target for teratogenesis. A cohort of miRNAs, including miR-153, may serve as mediators of teratogenesis. We previously showed that ethanol decreased, while nicotine increased miR-153 expression in NSCs. To understand the role of miR-153 in the etiology of teratology, we first screened fetal cortical NSCs cultured ex vivo, by microarray and quantitative RT-PCR analyses, to identify cell-signaling mRNAs and gene networks as important miR-153 targets. Moreover, miR-153 over-expression prevented neuronal differentiation without altering neuroepithelial cell survival or proliferation. Analysis of 3'UTRs and in utero over-expression of pre-miR-153 in fetal mouse brain identified Nfia (nuclear factor-1A) and its paralog, Nfib, as direct targets of miR-153. In utero ethanol exposure resulted in a predicted expansion of Nfia and Nfib expression in the fetal telencephalon. In turn, miR-153 over-expression prevented, and partly reversed, the effects of ethanol exposure on miR-153 target transcripts. Varenicline, a partial nicotinic acetylcholine receptor agonist that, like nicotine, induces miR-153 expression, also prevented and reversed the effects of ethanol exposure. These data collectively provide evidence for a role for miR-153 in preventing premature NSC differentiation. Moreover, they provide the first evidence in a preclinical model that direct or pharmacological manipulation of miRNAs have the potential to prevent or even reverse effects of a teratogen like ethanol on fetal development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Supelco
Progesterone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
(−)-Nicotine, ≥99% (GC), liquid
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Progesterone, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Progesterone, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Progesterone, ≥99%
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Supelco
Progesterone, VETRANAL®, analytical standard
Supelco
(−)-Nicotine, PESTANAL®, analytical standard
Sigma-Aldrich
Progesterone, meets USP testing specifications
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Progesterone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Progesterone for peak identification, European Pharmacopoeia (EP) Reference Standard
Progesterone for system suitability, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Anti-Microtubule-Associated Protein 2 (MAP2) Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
USP
Progesterone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Anti-NFIB antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
(±)-Nicotine, ≥99% (TLC), liquid