Skip to Content
Merck
  • The ClC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes.

The ClC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes.

Molecular pharmacology (2015-05-07)
Takashi Kurita, Hisao Yamamura, Yoshiaki Suzuki, Wayne R Giles, Yuji Imaizumi
ABSTRACT

Articular chondrocytes in osteoarthritis (OA) patients are exposed to hypoosmotic stress because the osmolality of this synovial fluid is significantly decreased. Hypoosmotic stress can cause an efflux of Cl(-) and an associated decrease of cell volume. We have previously reported that a Cl(-) conductance contributes to the regulation of resting membrane potential and thus can alter intracellular Ca(2+) concentration ([Ca(2+)]i) in human chondrocytes. The molecular identity and pathologic function of these Cl(-) channels, however, remained to be determined. Here, we show that the ClC-7 Cl(-) channel is strongly expressed in a human chondrocyte cell line (OUMS-27) and that it is responsible for Cl(-) currents that are activated by extracellular acidification (pH 5.0). These acid-sensitive currents are inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; IC50 = 13 μM) and are markedly reduced by small-interfering RNA-induced knockdown of ClC-7. DIDS hyperpolarized these chondrocytes, and this was followed by an increase in [Ca(2+)]i. ClC-7 knockdown caused a similar hyperpolarization of the membrane potential. Short-term culture (48 hours) in hypoosmotic medium (270 mOsm) reduced the expression of ClC-7 and decreased the acid-sensitive currents. Interestingly, these hypoosmotic culture conditions, or ClC-7 knockdown, resulted in enhanced cell death. Taken together, our results show that the significant hyperpolarization due to ClC-7 impairment in chondrocytes can significantly increase [Ca(2+)]i and cell death. Thus, downregulation of ClC-7 channels during the hypoosmotic stress that accompanies OA progression is one important concept of the complex etiology of OA. These findings suggest novel targets for therapeutic intervention(s) and drug development for OA.

MATERIALS
Product Number
Brand
Product Description

SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Clcn7
Sigma-Aldrich
MISSION® esiRNA, targeting human CLCN7
Sigma-Aldrich
Calcium chloride, Vetec, reagent grade, 96%
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O