Skip to Content
Merck
  • OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3.

OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3.

Nature communications (2013-09-28)
Lina Herhaus, Mazin Al-Salihi, Thomas Macartney, Simone Weidlich, Gopal P Sapkota
ABSTRACT

SMAD transcription factors are key intracellular transducers of TGFβ cytokines. SMADs are tightly regulated to ensure balanced cellular responses to TGFβ signals. Ubiquitylation has a key role in regulating SMAD stability and activity. Several E3 ubiquitin ligases that regulate the turnover of SMADs are known; however, proteins that prevent the ubiquitylation or cause deubiquitylation of active SMADs remain undefined. Here we demonstrate that OTUB1 is recruited to the active phospho-SMAD2/3 complex only on TGFβ induction. Further, OTUB1 has a crucial role in TGFβ-mediated gene transcription and cellular migration. OTUB1 inhibits the ubiquitylation of phospho-SMAD2/3 by binding to and inhibiting the E2 ubiquitin-conjugating enzymes independent of its catalytic activity. Consequently, depletion of OTUB1 in cells causes a rapid loss in levels of TGFβ-induced phospho-SMAD2/3, which is rescued by the proteasomal inhibitor bortezomib. Our findings uncover a signal-induced phosphorylation-dependent recruitment of OTUB1 to its target in the TGFβ pathway.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2-Peroxidase (HRP) antibody produced in mouse, clone M2, purified immunoglobulin, buffered aqueous glycerol solution
Roche
Anti-HA-Peroxidase, High Affinity, from rat IgG1