Skip to Content
Merck
  • Effects of cyano-substituents on the molecular packing structures of conjugated polymers for bulk-heterojunction solar cells.

Effects of cyano-substituents on the molecular packing structures of conjugated polymers for bulk-heterojunction solar cells.

ACS applied materials & interfaces (2014-08-26)
Hyojung Cha, Hyoung Nam Kim, Tae Kyu An, Moon Sung Kang, Soon-Ki Kwon, Yun-Hi Kim, Chan Eon Park
ABSTRACT

The molecular packing structures of two conjugated polymers based on alkoxy naphthalene, one with cyano-substituents and one without, have been investigated to determine the effects of electron-withdrawing cyano-groups on the performance of bulk-heterojunction solar cells. The substituted cyano-groups facilitate the self-assembly of the polymer chains, and the cyano-substituted polymer:PC71BM blend exhibits enhanced exciton dissociation to PC71BM. Moreover, the electron-withdrawing cyano-groups lower the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the conjugated polymer, which leads to a higher open circuit voltage (V(OC)) and a lower energy loss during electron transfer from the donor to the acceptor. A bulk-heterojunction device fabricated with the cyano-substituted polymer:PC71BM blend has a higher V(OC) (0.89 V), a higher fill factor (FF) (51.4%), and a lower short circuit current (J(SC)) (7.4 mA/cm(2)) than that of the noncyano-substituted polymer:PC71BM blend under AM 1.5G illumination with an intensity of 100 mW cm(-2). Thus, the cyano-substitution of conjugated polymers may be an effective strategy for optimizing the domain size and crystallinity of the polymer:PC71BM blend, and for increasing V(OC) by tuning the HOMO and LUMO energy levels of the conjugated polymer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium iodide, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
n-Butyllithium solution, 2.0 M in cyclohexane
Sigma-Aldrich
n-Butyllithium solution, 1.6 M in hexanes
Supelco
Sodium carbonate concentrate, 0.1 M Na2CO3 in water, eluent concentrate for IC
Sigma-Aldrich
Phenylboronic acid, 95%
Sigma-Aldrich
Sodium iodide, 99.999% trace metals basis
Sigma-Aldrich
Phenylboronic acid, purum, ≥97.0% (HPLC)
Sigma-Aldrich
n-Butyllithium solution, 2.7 M in heptane
Sigma-Aldrich
Potassium hydroxide, tested according to Ph. Eur.
Sigma-Aldrich
Sodium iodide, ≥99.99% trace metals basis
Sigma-Aldrich
n-Butyllithium solution, 2.5 M in hexanes
Sigma-Aldrich
Iodine, 99.999% trace metals basis
Sigma-Aldrich
5-Bromo-2-thiophenecarboxaldehyde, 95%
Sigma-Aldrich
Bromine, ≥99.99% trace metals basis
Sigma-Aldrich
Iodine, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium carbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
n-Butyllithium solution, 11.0 M in hexanes
Supelco
Potassium hydroxide solution, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
Iodine, anhydrous, beads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Bromine, ACS reagent, ≥99.5%
Sigma-Aldrich
Bromine, reagent grade
Sigma-Aldrich
Potassium hydroxide, reagent grade, 90%, flakes
Sigma-Aldrich
Potassium hydroxide, anhydrous, ≥99.95% trace metals basis
Sigma-Aldrich
Iodine, ReagentPlus®, 99.7% trace metals basis, beads, 1-3 mm
Sigma-Aldrich
Iodine, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Sigma-Aldrich
Sodium iodide, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
Potassium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, 85-100.5%, pellets
Sigma-Aldrich
Potassium hydroxide, technical, ≥85%, powder
Sigma-Aldrich
Sodium iodide, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Potassium hydroxide, ≥85% KOH basis, pellets, white