Skip to Content
Merck
  • Phosphorylation of protein kinase C sites Ser42/44 decreases Ca(2+)-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes.

Phosphorylation of protein kinase C sites Ser42/44 decreases Ca(2+)-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes.

Archives of biochemistry and biophysics (2014-05-13)
Paul J M Wijnker, Vasco Sequeira, E Rosalie Witjas-Paalberends, D Brian Foster, Cristobal G dos Remedios, Anne M Murphy, Ger J M Stienen, Jolanda van der Velden
ABSTRACT

Protein kinase C (PKC)-mediated phosphorylation of troponin I (cTnI) at Ser42/44 is increased in heart failure. While studies in rodents demonstrated that PKC-mediated Ser42/44 phosphorylation decreases maximal force and ATPase activity, PKC incubation of human cardiomyocytes did not affect maximal force. We investigated whether Ser42/44 pseudo-phosphorylation affects force development and ATPase activity using troponin exchange in human myocardium. Additionally, we studied if pseudo-phosphorylated Ser42/44 modulates length-dependent activation of force, which is regulated by protein kinase A (PKA)-mediated cTnI-Ser23/24 phosphorylation. Isometric force was measured in membrane-permeabilized cardiomyocytes exchanged with human recombinant wild-type troponin or troponin mutated at Ser42/44 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after PKA incubation. ATPase activity was measured in troponin-exchanged cardiac muscle strips. Compared to wild-type, 42D/44D decreased Ca(2+)-sensitivity without affecting maximal force in failing and donor cardiomyocytes. In donor myocardium, 42D/44D did not affect maximal ATPase activity or tension cost. Interestingly, 42D/44D blunted the length-dependent increase in Ca(2+)-sensitivity induced upon PKA-mediated phosphorylation. Since the drop in Ca(2+)-sensitivity at physiological Ca(2+)-concentrations is relatively large phosphorylation of Ser42/44 may result in a decrease of force and associated ATP utilization in the human heart.

MATERIALS
Product Number
Brand
Product Description

Serine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
L-Serine, Vetec, reagent grade, ≥99%
Supelco
L-Serine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Serine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Serine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Serine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Serine, ReagentPlus®, ≥99% (HPLC)