Skip to Content
Merck
  • Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes.

Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes.

Toxicology in vitro : an international journal published in association with BIBRA (2014-12-03)
Zaigham Abbas Rizvi, Niti Puri, Rajiv K Saxena
ABSTRACT

Effect of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) was examined on lipid antigen presentation through CD1d pathway on three cell lines, LA4, MHS, and JAWSII used as prototype antigen presenting cells (APCs). CD1d molecule was expressed on 80-90% MHS (prototype macrophages) and JAWSII (prototype dendritic cells) cells whereas <5% LA4 cells (lung epithelial cells, non-classical APCs) expressed CD1d. Treatment with AF-SWCNTs but not with pristine SWCNTs resulted in a significant decline in the level of CD1d mRNA as well as mRNA levels of some other intracellular proteins involved in lipid antigen presentation pathway (MTP, ApoE, prosaposin, SR-BI and LDLr). Lipid antigen presentation was assessed by first incubating the cells with a prototype lipid antigen (α-Glactosylceramide or αGC) and then staining with L363 monoclonal antibody that detects αGC bound to CD1d molecule. While 100% MHS and JAWSII cells presented αGC, only 20% LA4 cells presented the CD1d antigen. Treatment with AF-SWCNTs resulted in a 30-40% decrease in αGC antigen presentation in all three cell lines. These results show that AF-SWCNT treatment down regulated the lipid antigen presentation pathway in all three cell lines and significantly lowered the ability of these cell lines to present αGC antigen.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium azide, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Sodium azide, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Sodium acetate, 99.995% trace metals basis
Sigma-Aldrich
Sodium acetate solution, BioUltra, for molecular biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, for luminescence, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG
Sigma-Aldrich
Boric acid-11B, ≥99 atom % 11B
Sigma-Aldrich
Sodium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium acetate, anhydrous, for molecular biology, ≥99%
Sigma-Aldrich
Sodium azide, BioXtra
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Sodium acetate, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Diethyl pyrocarbonate, 96% (NT)
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Boric acid, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Boric acid, 99.999% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Boric acid, 99.97% trace metals basis
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Ethylenediamine solution, technical, 75-80%
Sigma-Aldrich
Ethylenediamine, ReagentPlus®, ≥99%
Sigma-Aldrich
Diethyl pyrocarbonate, 96% (NT)