Skip to Content
Merck
  • Extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway.

Extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway.

PloS one (2014-08-12)
Chao-Ying Huang, Cheng-Wei Chang, Chaang-Ray Chen, Chun-Yu Chuang, Chi-Shiun Chiang, Wun-Yi Shu, Tai-Ching Fan, Ian C Hsu
ABSTRACT

In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure.

MATERIALS
Product Number
Brand
Product Description

Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
Trypan Blue, ≥80% (HPLC), Dye content 60 %
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Chek2
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
MISSION® esiRNA, targeting human CHEK2
Sigma-Aldrich
L-Glutamine
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Trypan Blue solution, 0.4%, for microscopy
SAFC
L-Glutamine
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture