Skip to Content
Merck
  • Nanolithography. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures.

Nanolithography. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures.

Science (New York, N.Y.) (2014-12-17)
Huang Gao, Yaowu Hu, Yi Xuan, Ji Li, Yingling Yang, Ramses V Martinez, Chunyu Li, Jian Luo, Minghao Qi, Gary J Cheng
ABSTRACT

We report a low-cost, high-throughput benchtop method that enables thin layers of metal to be shaped with nanoscale precision by generating ultrahigh-strain-rate deformations. Laser shock imprinting can create three-dimensional crystalline metallic structures as small as 10 nanometers with ultrasmooth surfaces at ambient conditions. This technique enables the successful fabrications of large-area, uniform nanopatterns with aspect ratios as high as 5 for plasmonic and sensing applications, as well as mechanically strengthened nanostructures and metal-graphene hybrid nanodevices.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gold, beads, 1-6 mm, 99.999% trace metals basis
Sigma-Aldrich
Gold, powder, <10 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 1.0 mm, 99.997% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Graphite, flakes
Sigma-Aldrich
Graphite, rod, L 150 mm, diam. 6 mm, 99.995% trace metals basis
Sigma-Aldrich
Graphite, powder, <20 μm, synthetic
Sigma-Aldrich
Gold, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.05 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, wire, diam. 0.1 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, powder, <45 μm, 99.99% trace metals basis
Sigma-Aldrich
Graphite, powder, <45 μm, ≥99.99% trace metals basis
Sigma-Aldrich
Graphite, rod, L 150 mm, diam. 3 mm, low density, 99.995% trace metals basis
Sigma-Aldrich
Gold, foil, thickness 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Gold, rod, diam. 3.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Graphite, powder, <150 μm, 99.99% trace metals basis
Gold, tube, 100mm, outside diameter 1.60mm, inside diameter 0.6mm, wall thickness 0.5mm, as drawn, 99.95%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.8mm, wall thickness 0.1mm, as drawn, 99.95%
Gold, rod, 6mm, diameter 6.0mm, as drawn, 99.95%
Gold, rod, 10mm, diameter 6.0mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 3.0mm, inside diameter 2.8mm, wall thickness 0.10mm, as drawn, 99.95%
Gold, tube, 100mm, outside diameter 10.0mm, inside diameter 9.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, tube, 200mm, outside diameter 2.0mm, inside diameter 1.7mm, wall thickness 0.15mm, as drawn, 99.95%
Gold, insulated wire, 2m, conductor diameter 0.125mm, insulation thickness 0.014mm, polyester insulation, 99.99%
Gold, insulated wire, 0.5m, conductor diameter 0.075mm, insulation thickness 0.012mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, insulated wire, 0.1m, conductor diameter 0.125mm, insulation thickness 0.016mm, PTFE (polytetrafluoroethylene) insulation, 99.99%
Gold, microfoil, disks, 10mm, thinness 0.5μm, specific density 966μg/cm2, permanent mylar 3.5μm support, 99.99+%