Skip to Content
Merck
  • Manganese peroxidase-catalyzed oxidative degradation of vanillylacetone.

Manganese peroxidase-catalyzed oxidative degradation of vanillylacetone.

Chemosphere (2008-05-13)
Sangpill Hwang, Chang-Ha Lee, Ik-Sung Ahn, Kwangyong Park
ABSTRACT

When 4-(4-hydroxy-3-methoxy-phenyl)-2-butanone (vanillylacetone) was tested for manganese peroxidase (MnP)-catalyzed oxidation, it was found to be degraded with the cleavage of an aromatic ring. Among numerous products of vanillylacetone oxidation, four major ones were purified by thin-layer chromatography and identified using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analysis. Three of them maintained the aromatic ring structure and were identified as 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-butan-2-one, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, and 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-3-buten-2-one. Even though the fourth product could not be purified to a single compound, data from infrared spectroscopy showed that it did not have a benzene ring. From MS and NMR analysis, 3-(3-oxo-butyl)-hexa-2,4-dienedioic acid-1-methyl ester was tentatively suggested as the dominant species. The reaction mechanism was suggested on the basis of the structural information of these products. To our knowledge, this paper is the first report on aromatic ring cleavage of the phenolic compound by MnP.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Vanillylacetone, ≥96%, FG