- Divergent effects of the 'biased' 5-HT1 A receptor agonists F15599 and F13714 in a novel object pattern separation task.
Divergent effects of the 'biased' 5-HT1 A receptor agonists F15599 and F13714 in a novel object pattern separation task.
Pattern separation, that is, the formation of distinct representations from similar inputs, is an important hippocampal process implicated in cognitive domains like episodic memory. A deficit in pattern separation could lead to memory impairments in several psychiatric and neurological disorders. Hence, mechanisms by which pattern separation can be increased are of potential therapeutic interest. 5-HT1A receptors are involved in spatial memory. Herein we tested the 'biased' 5-HT1A receptor agonists F15599, which preferentially activates post-synaptic heteroreceptors, and F13714, which preferentially activates raphe-located autoreceptors, in rats in a novel spatial task assessing pattern separation, the object pattern separation (OPS) task. The acetylcholinesterase inhibitor donepezil, which served as a positive control, significantly improved spatial pattern separation at a dose of 1 mg·kg(-1) , p.o. F15599 increased pattern separation at 0.04 mg·kg(-1) , i.p., while F13714 decreased pattern separation at 0.0025 mg·kg(-1) , i.p. The selective 5-HT1A receptor antagonist WAY-100635 (0.63 mg·kg(-1) , s.c.) counteracted the effects of both agonists. These data suggest that acute preferential activation of post-synaptic 5-HT1A heteroreceptors improves spatial pattern separation, whereas acute preferential activation of raphe-located 5-HT1A autoreceptors impairs performance. We successfully established and validated a novel, simple and robust OPS task and observed a diverging profile of response with 'biased' 5-HT1A receptor agonists based on their targeting of receptors in distinct brain regions. Our data suggest that the post-synaptic 5-HT1A receptor consists of a potential novel molecular target to improve pattern separation performance.