Skip to Content
Merck
  • Self recognition in the Ig superfamily. Identification of precise subdomains in carcinoembryonic antigen required for intercellular adhesion.

Self recognition in the Ig superfamily. Identification of precise subdomains in carcinoembryonic antigen required for intercellular adhesion.

The Journal of biological chemistry (2000-06-24)
M Taheri, U Saragovi, A Fuks, J Makkerh, J Mort, C P Stanners
ABSTRACT

The homophilic binding of extracellular domains of membrane-bound immunoglobulin superfamily (IgSF) molecules is often required for intercellular adhesion and signaling. Carcinoembryonic antigen (CEA), a member of the IgSF, is a widely used tumor marker that functions in vitro as a homotypic intercellular adhesion molecule. CEA has also been shown to contribute to tumorigenicity by inhibiting cellular differentiation, an effect that requires the homophilic binding of its extracellular domains. It was of interest, therefore, to identify small subdomain sequences in CEA that could serve as a focus in the design of peptides that disrupt CEA-mediated intercellular adhesion. Three subdomains in the N-terminal domain of CEA, identified by site-directed deletions and point mutations, were shown to be required for intercellular adhesion. Cyclized peptides representing two of these subdomains, (42)NRQII and (80)QNDTG, were found to be effective in blocking CEA-mediated cellular aggregation when added to CEA-expressing transfectants in suspension. Intermolecular binding involving each of these subdomains is therefore essential for intercellular adhesion and cannot be compensated for by known binding contributions of other regions in the CEA molecule. In further support of this assumption, the binding epitope of an anti-CEA monoclonal antibody (monoclonal antibody A20) known to block CEA-mediated adhesion, was shown to bridge two of the three required subdomains: (42)NRQII and (30)GYSWYK.