Skip to Content
Merck
  • Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

Proceedings of the National Academy of Sciences of the United States of America (2014-12-17)
Melissa A Donaldson, David L Bish, Jonathan D Raff
ABSTRACT

Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sulfuric acid concentrate, 0.1 M H2SO4 in water (0.2N), eluent concentrate for IC
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Sodium hydroxide ChemBeads
Sigma-Aldrich
Aluminum chloride, 99.99% trace metals basis
Sigma-Aldrich
Aluminum chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Aluminum chloride, anhydrous, powder, 99.999% trace metals basis
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, purum, ≥32%
Sigma-Aldrich
Sulfuric acid, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Aluminum chloride solution, 1.0 M in nitrobenzene
Sigma-Aldrich
Sulfuric acid, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Aluminum chloride, reagent grade, 98%
Sigma-Aldrich
Aluminum chloride, anhydrous, sublimed, ≥98%
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sulfuric acid solution, puriss. p.a., ≥25% (T)
Supelco
Sulfuric acid, for the determination of nitrogen, ≥97.0%
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Sigma-Aldrich
Sulfuric acid, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%