Skip to Content
Merck
  • Secretion of VLDL, but not HDL, by rat hepatocytes is inhibited by the ethanolamine analogue N-monomethylethanolamine.

Secretion of VLDL, but not HDL, by rat hepatocytes is inhibited by the ethanolamine analogue N-monomethylethanolamine.

Journal of lipid research (1991-12-01)
J E Vance
ABSTRACT

The role of phospholipids in the assembly and secretion of very low density lipoproteins (VLDL) has been investigated by incubation of monolayer cultures of rat hepatocytes with monomethylethanolamine, an analogue of ethanolamine and choline. The cellular concentration of phosphatidylmonomethylethanolamine was increased 17-fold in response to treatment of hepatocytes with monomethylethanolamine. The secretion of phosphatidylcholine, triacylglycerol, and the apolipoproteins BH, BL, and E into VLDL was inhibited by approximately 50% in hepatocytes incubated with monomethylethanolamine, compared to untreated cells. Cell viability was unaffected by treatment with the ethanolamine analogue, as was cellular protein synthesis. The mechanism by which monomethylethanolamine reduced VLDL secretion was examined. Since monomethylethanolamine is a structural analogue of ethanolamine and choline, an obvious hypothesis for explanation of the effect on VLDL secretion was that phosphatidylcholine biosynthesis, which is required for VLDL secretion (Z. Yao and D. E. Vance. 1988. J. Biol. Chem. 263: 2998-3004) was inhibited. However, the biosynthesis of phosphatidylcholine from [3H]choline or from [3H]glycerol was not significantly reduced in the analogue-treated, compared with the untreated, hepatocytes. Nor was the incorporation of [3H]glycerol into cellular triacylglycerol altered in the monomethylethanolamine-treated cells. Furthermore, addition of monomethylethanolamine to hepatocytes did not reduce the rate of biosynthesis of phosphatidylethanolamine either from CDP-ethanolamine or from phosphatidylserine, nor was phosphatidylserine biosynthesis from [3-3H]serine affected. The 50% inhibition of VLDL secretion elicited by monomethylethanolamine was apparently specific for VLDL because there was no difference in secretion of HDL (lipid or apoprotein moieties) or albumin by cells incubated with or without the ethanolamine analogue. The experiments showed that inhibition of VLDL secretion by monomethylethanolamine was not the result of decreased biosynthesis of phospholipids, triacylglycerols, or cholesteryl esters. More subtle effects of the ethanolamine/choline analogue, for example interference by the increased amount of phosphatidylmonomethylethanolamine, in the process of assembly of lipids with apoB remain a possibility.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-(Methylamino)ethanol, ≥98%