Skip to Content
Merck
  • Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B.

Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B.

Journal of experimental botany (2020-02-02)
Jean-Félix Dallery, Marlene Zimmer, Vivek Halder, Mohamed Suliman, Sandrine Pigné, Géraldine Le Goff, Despoina D Gianniou, Ioannis P Trougakos, Jamal Ouazzani, Debora Gasperini, Richard J O'Connell
ABSTRACT

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-Methylumbelliferyl-β-D-glucuronide hydrate, suitable for fluorescence, ≥99.0% (HPLC)
Sigma-Aldrich
Peroxidase from horseradish, Type VI-A, essentially salt-free, lyophilized powder, ≥250 units/mg solid (using pyrogallol), 950-2000 units/mg solid (using ABTS)
Sigma-Aldrich
DL-Cysteine, technical grade
Sigma-Aldrich
E-64, protease inhibitor
Sigma-Aldrich
Epoxomicin, ≥95% (HPLC), solid
Sigma-Aldrich
Anti-Actin (plant) antibody, Mouse monoclonal, clone 10-B3 (MAbGPa), purified from hybridoma cell culture
Roche
Anti-GFP, from mouse IgG1κ (clones 7.1 and 13.1)