Saltar al contenido
Merck

Ghrelin increases growth hormone production and functional expression of NaV1.1 and Na V1.2 channels in pituitary somatotropes.

Endocrine (2014-08-26)
Adasue Magdaleno-Méndez, Belisario Domínguez, Araceli Rodríguez-Andrade, Manuel Barrientos-Morales, Patricia Cervantes-Acosta, Antonio Hernández-Beltrán, Ricardo González-Ramírez, Ricardo Felix
RESUMEN

A variety of ion channels are expressed in the plasma membrane of somatotropes within the anterior pituitary gland. Modification of these channels is linked to intracellular Ca2+ levels and therefore to hormone secretion. Previous investigations have shown that the gut-derived orexigenic peptide hormone ghrelin and synthetic GH-releasing peptides (GHRPs) stimulate release of growth hormone (GH) and increase the number of functional voltage-gated Ca2+ and Na+ channels in the membrane of clonal GC somatotropes. Here, we reveal that chronic treatment with ghrelin and its synthetic analog GHRP-6 also increases GH release from bovine pituitary somatotropes in culture, and that this action is associated with a significant increase in Na+ macroscopic current. Consistent with this, Na+ current blockade with tetrodotoxin (TTX) abolished the ghrelin- and GHRP-6-induced increase in GH release. Furthermore, semi-quantitative and real-time RT-PCR analysis revealed an upregulation in the transcript levels of GH, as well as of NaV1.1 and NaV1.2, two isoforms of TTX-sensitive Na+ channels expressed in somatotropes, after treatment with ghrelin or GHRP-6. These findings improve our knowledge on (i) the cellular mechanisms involved in the control of GH secretion, (ii) the molecular diversity of Na+ channels in pituitary somatotropes, and (iii) the regulation of GH and Na+ channel gene expression by ghrelin and GHRPs.