Saltar al contenido
Merck

A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time.

Journal of biomaterials science. Polymer edition (2016-02-26)
Xiaoxiong Han, Dan Chen, Jing Sun, Jinsong Zhou, Duan Li, Feirong Gong, Yaling Shen
RESUMEN

Cabazitaxel (CTX) is a second-generation semisynthetic taxane that demonstrates antitumor activity superior to docetaxel. However, the low aqueous solubility of CTX has hampered its use as a therapeutic agent. In this work, CTX-loaded N-t-butoxycarbonyl-L-phenylalanine end-capped monomethyl poly (ethylene glycol)-block-poly (D,L-lactide) (mPEG-PLA-Phe(Boc)/CTX) micelles were prepared to improve the solubility of CTX while retaining its superior stability before accessing the tumor site. The mPEG-PLA-Phe(Boc)/CTX micelles showed excellent stability in vitro compared with mPEG-PLA/CTX micelles. When stored at 25 °C, the mPEG-PLA/CTX micelles tended to aggregate within 1 h, whereas the mPEG-PLA-Phe(Boc)/CTX micelles were uniformly transparent even after three weeks. Dilution of mPEG-PLA/CTX micelles widened their size distribution and decreased the encapsulation efficiency, while significant change was not found in mPEG-PLA-Phe(Boc)/CTX micelles, even when diluted 1000-fold. Pharmacokinetic results in Sprague-Dawley rats indicated that, compared with Jevtana(®), intravenous administration of mPEG-PLA-Phe(Boc)/CTX micelles stably retained the CTX in plasma with 26.03-fold larger of the area under the time-concentration curve, 2.13-fold longer of the half-life, and 9.99-fold higher of the maximum concentration. In conclusion, mPEG-PLA-Phe(Boc) micelle may be a potential nanocarrier not only to improve the solubility of CTX but also to prolong the blood circulation time, which results in improved biological activity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Boc-Phe-OH, ≥99.0% (T)