Saltar al contenido
Merck

Role of reduced graphene oxide in the critical components of a CdS-sensitized TiO2 -based photoelectrochemical cell.

Chemphyschem : a European journal of chemical physics and physical chemistry (2014-07-01)
Josephine Selvaraj, Satyajit Gupta, Steven DelaCruz, Vaidyanathan Ravi Subramanian
RESUMEN

Nitrogen (N)-doped reduced graphene oxide (nRGO) is systematically incorporated into a TiO(2) -CdS photoelectrochemical (PEC) cell and its role is examined in the three main components of the cell: 1) the CdS-sensitized TiO(2) photoanode, 2) the cathode, and 3) the S(2-)/S(.-) aqueous redox electrolyte. The nRGO layer is sandwiched between TiO(2) nanorods (deposited by using a solvothermal method) and CdS (deposited by using the successive ionic-layer-adsorption and -reaction method). Scanning electron microscopy with energy dispersive X-ray analysis (EDS) reveals the spatial distribution of CdS and nRGO, whereas nRGO formation is evident from Mott Schottky analysis. Chronoamperometry and PEC analysis indicate that upon incorporation of nRGO, a photocurrent density that is at least 27 times higher than that of pristine TiO(2) is achieved; this increase is attributable to the ability of the nRGO to efficiently separate and transport charges. Stability analysis performed by continuous photoillumination over ∼3 h indicates a 26% and 42 % reduction in the photocurrent in the presence and absence of the nRGO respectively. Formation of SO(4)(2-) is identified as the cause for this photocurrent reduction by using X-ray photoelectron spectroscopy. It is also shown that nRGO-coated glass is as effective as a Pt counter electrode in the PEC cell. Unlike the benefits offered by nRGO at the anode and cathode, introducing it in the redox electrolyte is detrimental. Systematic and complementary electrolyte and film-based studies on this aspect reveal evidence of the capacitive behavior of nRGO. Competition between the nRGO and the oxidized electrolyte is identified, based on linear-sweep voltammetry analysis, as the limiting step to efficient charge transport in the electrolyte.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Peróxido de hidrógeno solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Sodium sulfide nonahydrate, ACS reagent, ≥98.0%
Sigma-Aldrich
Potassium permanganate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium nitrate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Peróxido de hidrógeno solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Sodium nitrate, ACS reagent, ≥99.0%
Sigma-Aldrich
Isopropóxido de titanio (IV), 97%
Sigma-Aldrich
Sodium sulfide nonahydrate, ≥98.0%
Sigma-Aldrich
Potassium permanganate, ≤150 μm particle size, 97%
Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Sodium sulfide nonahydrate, ≥99.99% trace metals basis
Sigma-Aldrich
Potassium permanganate, ACS reagent, ≥99.0%, low in mercury
Millipore
Peróxido de hidrógeno solution, 3%, suitable for microbiology
Sigma-Aldrich
Isopropóxido de titanio (IV), 99.999% trace metals basis
Sigma-Aldrich
Isopropóxido de titanio (IV), ≥97.0%
Supelco
Peróxido de hidrógeno solution, ≥30%, for trace analysis
Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Peróxido de hidrógeno solution, 34.5-36.5%
Sigma-Aldrich
Sodium nitrate, 99.995% trace metals basis
Supelco
Peróxido de hidrógeno solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Isopropóxido de titanio (IV), packaged for use in deposition systems
Sigma-Aldrich
Sodium nitrate, ≥99.0%, suitable for plant cell culture
Sigma-Aldrich
Sodium nitrate, BioUltra, ≥99.0% (T)
Supelco
Sodium nitrate, analytical standard
Sigma-Aldrich
Peróxido de hidrógeno solution, tested according to Ph. Eur.
Sigma-Aldrich
Sodium nitrate, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium nitrate-14N, 99.95 atom % 14N