Saltar al contenido
Merck

Biodegradable and elastomeric poly(glycerol sebacate) as a coating material for nitinol bare stent.

BioMed research international (2014-06-24)
Min Ji Kim, Moon Young Hwang, JiHeung Kim, Dong June Chung
RESUMEN

We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.28 ± 0.004 MPa, and Young's modulus was 0.122 ± 0.0003 MPa. Elongation was as high as 237.8 ± 0.64%, and repeated elongation behavior was also observed to at least three times the original length without rupture. The water-in-air contact angles of the PGS surfaces were about 60°. We also analyzed the properties of an electrospray coating of biodegradable PGS on a nitinol stent for the purpose of enhancing long-term patency for the therapeutic treatment of varicose veins disease. The surface morphology and thickness of coating layer could be controlled by adjusting the electrospraying conditions and solution parameters.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sebacic acid, 99%