Saltar al contenido
Merck

Kinetics and mechanisms of the allyl + allyl and allyl + propargyl recombination reactions.

The journal of physical chemistry. A (2011-05-24)
Akira Matsugi, Kohsuke Suma, Akira Miyoshi
RESUMEN

The kinetics and mechanisms of the self-reaction of allyl radicals and the cross-reaction between allyl and propargyl radicals were studied both experimentally and theoretically. The experiments were carried out over the temperature range 295-800 K and the pressure range 20-200 Torr (maintained by He or N(2)). The allyl and propargyl radicals were generated by the pulsed laser photolysis of respective precursors, 1,5-hexadiene and propargyl chloride, and were probed by using a cavity ring-down spectroscopy technique. The temperature-dependent absorption cross sections of the radicals were measured relative to that of the HCO radical. The rate constants have been determined to be k(C(3)H(5) + C(3)H(5)) = 1.40 × 10(-8)T(-0.933) exp(-225/T) cm(3) molecule(-1) s(-1) (Δ log(10)k = ± 0.088) and k(C(3)H(5) + C(3)H(3)) = 1.71 × 10(-7)T(-1.182) exp(-255/T) cm(3) molecule(-1) s(-1) (Δ log(10)k = ± 0.069) with 2σ uncertainty limits. The potential energy surfaces for both reactions were calculated with the CBS-QB3 and CASPT2 quantum chemical methods, and the product channels have been investigated by the steady-state master equation analyses based on the Rice-Ramsperger-Kassel-Marcus theory. The results indicated that the reaction between allyl and propargyl radicals produces five-membered ring compounds in combustion conditions, while the formations of the cyclic species are unlikely in the self-reaction of allyl radicals. The temperature- and pressure-dependent rate constant expressions for the important reaction pathways are presented for kinetic modeling.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Propargyl chloride, 98%