Saltar al contenido
Merck

The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord.

Journal of medical and dental sciences (2008-03-01)
Kazuyuki Fukushima, Mitsuhiro Enomoto, Shoji Tomizawa, Makoto Takahashi, Yoshiaki Wakabayashi, Soichiro Itoh, Yoshinori Kuboki, Kenichi Shinomiya
RESUMEN

We developed a honeycomb-shaped lyophilized Type I atelocollagen (Honeycomb Collagen: HC) with different pore sizes, and the effectiveness of the honeycomb shape on nerve regeneration was examined. We analyzed neurite outgrowth of dorsal root ganglion (DRG) explants on HC, both in vitro and, with direct implantation of HC into the defects of adult rat spinal cords, in vivo. The neurites of DRGs on HC extended linearly through the pores. HC with a 400 microm-pore size enhanced neurite extension, and YIGSR laminin peptide coating to the HC extended more neurites than fibronectin coating. The HC scaffolds coated with YIGSR were implanted into 2 mm-defects of spinal cords at the level of T8-9. Four weeks after implantation, the implants had degraded and been replaced with self-tissues, repairing the injured site. Neurofilament-positive fibers were observed in the implantation area and passed the borders between the HC and spinal cord stumps. Functionally, a motor-evoked potential was observed in the quadriceps femoris muscle 10 weeks after implantation. The electrophysiological examination showed reconstruction of axon tracts over the implant. This result indicates that our developed honeycomb shape is advantageous for host spinal cord compared to the random pored sponge shape, and that it promotes axonal regeneration after spinal cord injury.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Tyr-Ile-Gly-Ser-Arg, ≥97% (HPLC)