Saltar al contenido
Merck

Investigation of transfer characteristics of high performance graphene flakes.

Journal of nanoscience and nanotechnology (2013-07-19)
Gunasekaran Venugopal, Karthikeyan Krishnamoorthy, Sang-Jae Kim
RESUMEN

In this article, we attempted a study on field effect transport characteristics of graphene flakes. These graphene flakes were exfoliated by mechanical peeling-off technique and the electrical contacts were patterned by photo-lithographic method. Graphene devices have shown better transfer characteristics which was obtained even in low-voltage (< 5 V). Back-gated graphene transistors were patterned on oxidized silicon wafers. A clear n-type to p-type transition at Dirac point and higher electron drain-current modulation in positive back-gate field with current minimum (the Dirac point) were observed at V(GS) = -1.7 V. The carrier mobility was determined from the measured transconductance. The transconductance of the graphene transistors was observed as high as 18.6 microS with a channel length of 68 microm. A maximum electron mobility of 1870 +/- 143 cm2/V x s and hole mobility of 1050 +/- 35 cm2/V x s were achieved at a drain bias 2.1 V which are comparatively higher values among reported for mechanically exfoliated graphene using lithographic method. The fabricated devices also sustained with high-current density for 40 hr in continuous operation without any change in device resistance, which could be applied for robust wiring applications.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Graphite, powder, <20 μm, synthetic
Sigma-Aldrich
Graphite, flakes
Sigma-Aldrich
Graphite, powder, <45 μm, ≥99.99% trace metals basis
Sigma-Aldrich
Graphite, rod, L 150 mm, diam. 3 mm, low density, 99.995% trace metals basis
Sigma-Aldrich
Graphite, powder, <150 μm, 99.99% trace metals basis
Sigma-Aldrich
Graphite, rod, L 150 mm, diam. 6 mm, 99.995% trace metals basis